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Lectures Outline

** Part | - Fundamentals
** An introduction to learning with graphs
+*»» Contractive and contextual graph processing

*** Quick literature survey

**Part Il - Generative approaches and research directions
*** Learning with generative models and learning to generate graphs
**Advanced topics, research directions and reproducibility

**» Applications
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Why Graphs?




Why Graphs?

Context is
fundamental for the
correct interpretation
of information




Introduction




Graph Structured Data

Oriented edge/arc e, Vectorial node label
7 Xy

possibly with label lvu'\

Node/vertex u «~——

— Cycle

Undirected edge «—— Structures are useful because

allow to represent
relationships in the data
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Deep Learning with graphs

Node
N representation
O depends on its
context (shorter

Hierarchical Q first-longer later)
representation
learning allows to \‘ \/'
efficiently diffuse
information
through graph Q
structure




Challenges in Learning with Graphs

o Learning from a population where each
individual can have different topology and size

o Dealing with cycles
> Node and edge induction




Predictive Tasks (Transductive &

Inductive)

Network data

1SR
:

e classification/regres

@E @E
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Structure transduction

Given a e TN~ y
. /7 <
vectorial S~
and/or
structured ~
, X y~P(y|x)
Input
//V
S~ - Learn to generate a

structured prediction




Learning with graphs is
learning how to deal
with cycles




An Historical (and Geographical)
Perspective

Early neural network
approaches to deal with cyclic

graphs of varying topology
date back to 2005-2009

*/chxx**
UNIVERSITA DI P1sA UNIVERSIT A
DI SIENA

1240




Contractive - Graph Neural Networks
(GNN)

+* Extend the Recurrent/Recursive Neural
Network approach to cyclic graphs

*** Handle loops through fixed points

*** Impose dynamic weight constraints to
yield a contractive state mapping

R Scarselli et al, TNN 2009
X = fo (L L2y 0a,n - La gy Le, ) s X2, %3, X4, X, b 13 Uy I )
~— Y~ https://sailab.diism.unisi.it/gnn/
lco[l] X ne[l] lne[n]



https://sailab.diism.unisi.it/gnn/

Contextual - Neural Networks for Graphs
(NN4G)

**» A feedforward approach to process
graphs

*** Handle loops through layering

**» Uses context from frozen earlier
layers compute the state on the node

at current layer

L=1
** Layerwise training

A. Micheli, TNN 2009




Deep Graph Networks




A Nomenclature Nightmare

N | networks f h
Deep learning for graphs =UFal NELWOTKS TOT graph>

Graph neural networks CNN for/on graphs

Deep Graph Networks

Graph CNN , .
Learning graph/node embedding

Geometric deep learning Graph Convolutional Networks




A Survey of Recent Approaches

+** Convolutional Neural Networks for Graphs

*»*Spectral

*»*Spatial

¢ Recurrent Graph Processing

** Fast graph reservoir networks

***Contextual Graph Processing
** Neural fingerprints
** Node embedding, GraphSage
** GIN, GAT, ...




Convolutional Neural
Networks for Graphs




How to Perform Convolutions on Graphs

SPATIAL DOMAIN SPECTRAL DOMAIN

F(fxg)=F()xF(g)

Exploit the Convolution Theorem and
Fourier analysis to perform
convolutions in the spectral domain

What is the
equivalent of
sliding a kernel to

aggregate local Decompose a function f as a
spatial combination of vectors e, from an
orthonormal basis

information?




Spectral Convolutions




The Spectral Scenario

** Single weighted undirected
graph
“ w;; > 0 weight of the i-j edge

“* Functions f; attaching values
(i.e. labels/signals x;) to nodes i

¢ Task: process the signals
defined on the graph structure




Spectral Graph Convolution in 1 Slide

Given a graph G, the eigendecomposition of its Laplacian provides an
orthonormal basis U which allow to compute the graph convolution
of its node signals f with a filter

(f ¢ 9) = FH(F(H) F(@) = UWQU"f
|
Convolutional filter g in spectral domain / \

Graph equivalent of the learnable CNN Spectral convolution matrix
filter matrix W W contains information on
the graph Laplacian




Considerations on Spectral Approaches

*** Cannot handle multiple graphs due to convolution dependency
on Laplacian (use on network data tasks)

*** Mostly limited to undirected graphs with unlabeled edges

*** Extension to directed graphs using Laplacian block structure and
triangular motifs (Benson et al 2016; Monti, Otness, Bronstein 2018)

+* Difficult control on context diffusion through the graph structure

*** Working with the Laplacian can be impractical for large graphs




Spatial Convolutions




A Graph View on Convolutions
o4 o] 4444
ARt i aidhing

Plus some key assumptions which make it difficult to
directly apply them to graphs

Visual convolut.lons are < Regular neighborhood
graph convolutions on a ¢ Existence of a total node ordering
regular grid




Node Neighborhoods

Example of 4-neighborhoods

1convolutions1 1 1

Neighborhoods depend on node ordering:
how can | get coherent node ordering across
multiple graphs?




PATCHY-SAN

Niepert, Ahmed, Kutzkov, ICML 2016

Leverage graph labelling techniques (e.g. Weisfeiler-Lehman) to determine a coherent
ordering within the graph and between the graphs

Parametric convolutional
filter of size k

Neighborhood for k=5
W1| W2 |W3 | Wy| W5

Determining a coherent ordering to match
nodes to filter parameters in NP complete

(graph normalization)




PATCHY-SAN considerations

** Can handle multiple graphs, undirected and directed, with labels
on both edges and nodes

+** Can reuse CNN machinery: striding, pooling, ...

*** Performance relies heavily on quality of the ordering
*»* Edge labels are used only for computing node ordering
*** How to choose neighborhood size?

¢ Worst case complexity is exponential due to graph normalization




Contractive Approach




Reservoir Computing for Graphs

**Each input graph is encoded by the fixed point of a
readout [‘ ® ‘] dynamical system
L
N **The dynamical system is implemented by a hidden layer of
||
recurrent reservoir neurons
reservoir /’i.\.\
é\./g i\ “*Reservoir Computing (RC)
l m. .N **Reservoir neurons do not require learning
'3 0 ® +*Only output layer is trained (in closed form)
\A //
// **Deep Architecture - Multiple levels of reservoir for graphs
== untrained i — ) .
txxl are stacked to enrich the developed representation

== s} trained




Graph embedding by learning-free

Neurons
Each vertex in an input graph is encoded by the hidden layer
vk O\./O
ﬂ input weight matrix hldden weight matrix
v, |
) Y FET)
h(v) _ / ‘ v'EN(V)
embedding (state)

/ f \ of vertex v input feature embedding (state)

x(v) [|h(wy) |-|h(vy) of vertex v of neighbors of vertex v

DAVIDE BACCIU - UNIVERSITA DI PISA 33




Gallicchio & Micheli. AAAI

Deep Reservoirs for Graphs 2020,

readout layer

x(Vl) ‘(1)(17) L —————————————l
® @™ @™ b (9) . h(v)
*(v2) uﬁh(”(v? / \II"’(L)(VZ —@ ¥(g |
VEV,
9
"“’3)\/(‘*) e )\/h“><v> D o = — ____|
‘x(vs) Qt(l) (vs)
first layer last layer Trained in closed-form (e.g., pseudo-

inversion, ridge regression)
Deep reservoir embedding

DAVIDE BACCIU - UNIVERSITA DI PISA 34




Contextual Graph
Processing




Duvenaud, Maclaurin et al, NIPS 2015

Neural (differentiable) Fingerprints

Algorithm 2 Neural graph fingerprints

1: Input: molecule, radius R, hidden weights
Hi ... H}, output weights W7 ... Wg

Differentiable

Training by encoding

E;rcokr o Initialize: fingerprint vector f <— Og
PTop for each atom a in molecule
r, < g(a) > lookup atom features
for L=1t0 R > for each layer

for each atom a in molecule

Current node ri...ry = neighbors(a)

representation is

SV AN

N .
computed from Ve Tat ZJ\?}ZI H ” S}lm
previous layer Aggregation rq ¢ o(vH;')  ©smooth function
contributions only 1 <— SOfm}aX(ra W) > Spar81.fy
(contextual) f«f+1 > add to fingerprint

12: Return: real-valued vector f




Node Embedding

¢ Encode graph vertices into a vector space where vertex similarities (however

Hamilton, Ying, Leskovec, NIPS 2017

defined) are preserved

(o) ) R
__________ R

.20 h;-h; < h; - hy,
~~~~~~~~~ T ~» h;

() T
RPN /
Encoder @ Embedding space

¢ Encoding function which can take into account node context when

generating the vectorial encoding d(k) = ©(k|G) or ®(k|Ny)




Two Fundamental Principles -
Neighborhood Aggregation & Layering




What is inside of the Box?

A learning model of course (e.g. a neural network) including an
aggregation function to handle size-varying neighborhoods

hi™t e D
R » S > h.,
hi* \ /

A simple model '

h,, = o(W,AGG({hi™':i € N(v)}), W,;h 1)

DAVIDE BACCIU - UNIVERSITA DI PISA
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The graph convolutional layer

MLP/Linear MLP/Linear

R — ¢ (e, U (hE) | € A, ))

| S ) | S
state perm. invariant Model Neighborhood Aggregation hé+!
function NN4G [88] cr(w“‘lTxv 30D, ce ek Why * h:;)
GNN [104] S wen, MLPH! (xu,xv,aw, h.ﬂ)
GraphESN [44] a(W“lxu + W RS Lk ])
Variants/extensions: GON (72 7 (W Eewy Louhl)
GAT [120] o (Cuen, @it « W h,,)
Edge-aware convolution ECC [111] o (e Suen, MLP ™ (a0) Thi)
Attention over neighbours RGON 03] o (Hence Duensr frtey WAL + WL
. . GraphSAGE [54] o (W (08, 3, e, BED)
Laplacian-normalized Canin Sty n (Soseohy * (b Soin 1))

GIN [131] MLP™ (14 )ht + 32,00, BY)




Graph Isomorphism Network (a.k.a. sum
IS better) Xu et al, ICLR 2019

*** A study of GNN expressivity w.r.t. WL test of graph isomorphism

¢ Choice of aggregation functions influences what structures can
be recognized

*** Propose a simple aggregation and concatenation model

h®) — MLP® ((1 +e®y . -1 4 Z h(k—l)) Basically the NN4G

ueN (v) approach

h¢ = CONCAT(READOUT ({h{"v € G}) [k = 0,1, -+ , K)

DAVIDE BACCIU - UNIVERSITA DI PISA 41




Graph Attention

13

Learning to weight
contribution of other
nodes when aggregating
to form the node
embedding

f;; =0 Z aiij_?:j
JEN;

Velickovic et al, ICLR 2018

DAVIDE BACCIU - UNIVERSITA DI PISA 42




Training the Embedding

Backpropagate from the (graph or node level) error computed from the top layer
embeddings to the early layers

Loss
function on
the graph-
level or
node-level
predictions

_ )L Y _ Y

Can also be unsupervisedly trained by using structure induced notions of node
similarity (e.g. Node2Vec)

DAVIDE BACCIU - UNIVERSITA DI PISA 43




End-to-end Contextual Processing Recap

¢ Exploit contextual approach to avoid complex neighborhood construction

strategies
* No causal dependencies within layers, hence need no fixed-point recurrence

4

L)

L)

4

» Restrict context to the preceding layer alone (less general than NN4G)

L)

L)

** Number of layers is typically small (computational, parameterization and
oversmoothing issues related to end-to-end training)
** Embedding are either task-dependent (supervised learning) or need to hand-

define similarity in node space (unsupervised learning)
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Unsupervised Structure
Embeddings

.. WITH A PROBABILISTIC TWIST

T




Generative learning for graphs

** General, efficient and scalable architecture

** Handle arbitrary structure (directed, undirected or mixed), labelled edges
and nodes

** Learn in both supervised and unsupervised way

Contextual Graph Fixed-size
q Markov Model —} [ ] graph
(CGMM) representation
—

— \/\

Probabilistic Unsupervised Deep Supervised

Bacciu, Errica, Micheli, ICML 2018




CGMM in a nutshell

The single layer graphical model

+»Extension of a standard mixture model

Discrete variables

**Likelihood becomes intractable

Exploit a Switching Parent approximation Layer I-1

«*Consider only the direct neighborhood . ...,

Neighboring nodes

***Full stationarity




How to build the model

1. Map the graph to the ,.
model (base case) P(y11Q1) ]

2. Perform inference ‘

and freeze states

3. Add a new layer

and use frozen states ‘( i
as observed variables

in the graphical model

Go back to step 2




CGMM in a nutshell

Symmetric context spreading between vertexes (
et A
1 \ — C]
e : O——1
“*Each layer is trained in isolation LY
1 A
I, ( ‘\
" 'I \‘ “
***Inference computes hidden states’ assignments O————1+—0lz
. . . NS 5
Variables encode information NN ,*),' Y -
’ ’\\ \A/ ’ \ \\
' U 4 ‘ \
II I, ’ \\‘\ ‘\
7 l” \\
“*The architecture diffuses information CF———1)
! I
1
]

Deeper net 2 Wider context window




Learning phase

A maximum likelihood approach to learning

Assumption: i.i.d. graphs
. Emission distrib.

C
L = H H Z pl(yu|Qu _ ?:)Pl(Qu — Z|qkrp(‘§)° (g)) . Switching Parents distrib.

. Transition distrib.

geGuEg 1
Split by layer and by arc
c SN, > PH(Qu = ilg,)
| . vENS (u w = g
= TTIT 3 Pll0u=i) o P =D 3 Ps, = =2t
geG ueg i =3 a=1 w y
Y

Average of the remaining
contributions

Trained by EM




Inference

**Finding the most likely state assignment # Hidden states = 4

max P(yu|Qu = 1) P(Qu = ilayw)

Inferred states

(as colors)
“**The inferred latent states are used as

observable variables in subsequent layers

A fixed-size vector of states frequencies > 110l 2

as graph encoding

Frequency vector




CGMM — Depth Matters...

...possibly more
than width

Bacciu, Errica, Micheli, JIMLR 2020

78 - Hidden States
s
—— C=10 L} o
.,. '0.. .’o‘, '," ., J e |
76 ~#- C=5 FARL PN E O
-l C=20 L , = =< \ g
74 7 ..'. P : ® x7)'(\ /')o‘r:".-ax_.
> /a!.. '<><-r' a3 N ,:.,<x.~<.
© 72 AL m S g2
e ! .'\. -’?:»"”‘i/./ ./
- | ..‘\‘ " x,/.';‘x‘—.’
U . : ‘
9 70 1 /
© : R
68 1 i S e
&
=
66 - 7%

(@)
S

| & NC1

12345678 91011121314151617181920
layers




Interpreting CGMM

Thanks to the
probabilistic
approach

Bacciu, Errica, Micheli, JIMLR 2020




What about edge labels?

...a bit less dumbly if you add a
@yer £ \ second edge encoding module

xll

- T~ -~
! A} / \
| | [ |
3 1!0.0 “an Q|8 ‘;
N . g,
/ \

!
AS !f
!
!

Dumbly, for discrete edge labels... @

A
\
\

Ag
Errica et al JCNN 2021




You also earn some interesting
complimentary perks

v" Works well also when
edge labels are not
available

v Dynamic neighborhood
aggregation

v" Provides richer
node/graph
embeddings

layer £ -1




Velickovic, ICLR 2019

Deep Graph Infomax

Unsupervised approach seeking node representations that capture the global
information content of the entire graph

1 al IR s
st (3 %oom e ()] Rk o (10 ()

Learning maximizes the mutual information between local (node/patch)
embeddings h; and global graph summaries s

Use a proxy discriminator D to obtain probability scores for local-global pairs (and
out of current graph patches for negative examples)




Dealing with Multimodal Graph

Distributions
g ~ hy Errica, Bacciu, Micheli,
ICML 2021
DGy »
(n, 8. 7. RO _/\ o o

‘I’Q

1204
100
80 4

Qg

total infected cases

Graph Mixture Density Networks and their

application to epidemiology

:
Bly




Generating Graphs




Graph Generation

Generate a prediction that is itself a graph

/\L.

p(hy)

p(h,) h, O




Graph Variational Autoencoder

P

po(G|z)

: ) GraphVAE generates
A @' . adjacency matrix up to k
— ’ vertices
E
D $ Sample molecules by
argmax
= o latent space

|>_ interpolation

Simonovsky, Komodakis, ICLR-WS 2018




Language-Based Graph (Structure)
Generation

Generate a graph node-by-node and edge-by-edge through a sequential

approach
RNNT

RNN2

X

Softmax

I

GRU

2

Softmax

I

T
Embedding

GRU

I

Embedding

T

@20 ®6 @ 6)

!

@@ ereserer) —Pp»

1

x

C

20020 @

How to choose node
ordering?

You et al, ICML 2018

Bacciu et al,
Neurcomputing 2020




Lets generate some general structures...

EEEEEEEEE

ANOALS SDETS
RN Taikd
ANRCC AdROh
R AL LRV




..with good structural properties

I» Ot

I Counts

= A e N

E

= W M Bacciu et al,
Neurcomputing 2020

L




Generating Molecules

b o -
J,;& S W g oy o Fragment-based
| deep molecule
D" 0 KPS oy gl generation
PR A S S - Podda, Bacciu, Micheli,
R oy Wre A O AISTATS 2020

7\ = ﬁ X Y /\© mC mF mN mQO mOther m SINGLE = DOUBLE m TRIPLE M Tri ®mQuad ™ Pent M Hex
\—<—<_—-> Tf ’< ‘ ) f &

20 20 2

10




Generate Counterfactual Molecules for
DGN EXp‘alnabl‘lty Bacciu et al, NeurlIPS-

WS 2020/ 1JCNN 2021

m Predicted non-
toxic molecule

S g By
. o'} ¢ p(m)

N | " P ey
o)\/ui”} " Lonialn 3 Counterfactual

“Knowledge

Explainerg : N\\H
4{ ! } 7

Reinforcement-learning based graph alterations




Advanced topics &
research directions




What About Pooling?

*» Standard aggregation operates of predefined node subsets

** Ignore community/hierarchical structure in the graph

*** Need graph coarsening (pooling) operators

*» Differentiable
*** Graph theoretical

**» Graph signature

Pooling laym\




The Complete Picture — Graph
Convolutions & Graph Pooling




Differentiable Graph Pooling - DitffPool

Rex Ying et al, NIPS 2018

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

S0 — softmax (GNNl,pool( AD . x O ))

GNN embedding followed by softmax to obtain a matrix of (probabilistic)
assignment of nodes to clusters




Graph Theoretical Approaches

k-plex pool Algorithmic approaches
** Cliques (Velickovic et al, 2019)

+* k-plex cover (Bacciu et al, NeurlPS-
WS 2020, ECML/PKDD 2021)

** Max-ind set (Bacciu et al, 2021)

Factorization based

*» Community discovery as non-
negative matrix factorization (NMF)

+* NMF-Pook - Bacciu & Di Sotto, 2019

ldentify local community structures

in the graph




Scaling up to large graphs

*» Dealing with large-scale graphs
+** Social networks
** Recommendation systems
*** Biomedical network data
““*How?
s* Sampling
** Modularization (communities)

» Active learning

¢ HPC on graphs




Adversarial Attacks

Learn an attack policy by Q-learning (edge addition or deletion)

#v o ( Ql\ / Q zﬁ .
o W( 2) | w2 at St+1
...... - t [ EEE ]
—+  Wesass  om . I
EEN
1 ] L J
52V Module argmax Q** (s, ) \_s2v ®Nalve /) argmaxQ? (s,.a®,a)
a

Show GraphRNN vulnerability to both black-box and white-box
attacks (attack edges with maximum gradient)

H. Dai et al, ICML 2018




Interpretable Graph Networks

Identify relevant substructures
and features for the prediction

Node feature Feature excluded
vector from explanation

R. Xing et al, NeurIPS 2019

Explain predictions locally with
counterfactuals and local linear models

N - N Bacciu et al, 2021

Non-toxic

2R\

)

NH,  Turned toxic

7\
7\

_\__{
/

NH, Still non-toxic




Reproducible Science
(and Graphs)




Reproducibility Issues in Graph
Classification

Lack of details/code
o Data preprocessing steps
o Features used
> Model selection
> Model evaluation/risk assessment

Experimental ambiguity
o Label stratification?

o Accuracy of model selection rather than risk assessment
o Unclear if hyper-parameters optimized on the 10 test folds (unfair)

o Missing standard deviation

— Unclear, possibly unfair, and irreproducible experiments!




A uniform empirical setting for assessing
models in literature

Dataset
10-fold CV for risk assessment ;
. split
o Estimate of the true performances l
> 10 test folds never seen Jold, | foldy | folds Jfoldk,
r a
. Test Traing,
For each outer fold, simple
. t
hold-out for model selection reped Trainm | Tes Traing Model Assessment
Validation used to select o " Test Resut
o . est Results
" ” times :
best” hyper-parameters el
! Traing, Test
- -/

Run > 47k experiments . ‘l' _____________ ‘

o § model S E Train,; = Dataset :

> 9 datasets (chemical and social) J Model Seloction:

best hyperparameters
Train Valid




Results

Errica et al, ICLR
2020

Chem |Ca| IMDB-MULTI
60.0
D&D NCI1 PROT _ .
Baseline 78.4+45 69.8+22 75.8: .,
DGCNN 76.6 +4.3 76.4+1.7 T72.9-
DiffPool 75.0 + 3.5 94+1.9 73.7 - 222
ECC 72.6 + 4.1 2414  72.3- 500
GIN 75.3 + 2.9 0+14 733:,., 1
GraphSAGE ~ 72.9 + 2.0 0+1.8 73.0-
45.0
H 425
Social {
40.0
IMDB-B IMDB-M RE COLLAB
82.0
- Baseline 50.7 &= 2.4 36.1 4+ 3.0 72.
2 DGCNN 53.3+5.0 386+22 77. %90
é DiffPool 68.3+6.1 45.1 + 3.2 76. 78.0
s ECC 67.8+4.8 44.8 + 3.1 6.0
> GIN 66.8+3.9 42.24+46 8T. } o
Z  GraphSAGE 69.94+46 47.2+3.6 86. 40 i
72.0
o Baseline 70.8 +5.0 49.1+3.5  82. %
2 DGCNN 69.2+3.0 45.6+3.4  87. 700
E DiffPool 68.44+3.3 45.6+3.4  89. sso
~  ECC 67.7+2.8 435+ 3.1 '
E  GIN 71.24+ 3.9 485+3.3 89,
%  GraphSAGE  68.8 +4.5 47.6 3.5  84.- published @ Validation - Test

Main points:

e Baselines (no structure) can

perform better!
o  Chemical baseline:
Molecular fingerprint
(Ralaivola et al., 2005)

o  Social baseline: node MLP
+ nodes aggregation +
graph MLP

e Structure still needs to be fully
exploited

e Node degree affects results




Software

You can find most of the foundational models in this tutorial
implemented here

. P)/TOI’Ch DeepGraphlLibrary

geometric

Python library for speeding up prototyping and reproducible

Deep Graph Networks benchmarking
github.com/diningphil/PyDGN p?DGhI



github.com/diningphil/PyDGN

Data (Benchmarks)

o
OB
O-q

L5

TUDataset

4

L)

* Pytorch Geometric and DGL integration

L)

4

L)

» Standardized splits and evaluators + leader-
board

** Node, link and graph property prediction tasks

L)

**Standardise assessment of existing benchmarks
rather than inventing new ones

*»* Chemical, social, vision, synthetic,
bioinformatics (with leader-board)

*** Pytorch Geometric and DGL integration




Applications




Predicting Properties of Chemical

Compounds

Micheli et al, JCICS 2001 \

Duvenaud, Maclaurin et al, NIPS 2015
Gilmer et al, ICML 2017

2N
SR Al
4
\ ~ 1074 seconds /

~

> Toxicity

Solubility

/

\_

Simulation
methods

~ 103 seconds

~

_/

Quantum
mechanical
properties

7




Side Effects of Drug Combinations

E Polypharmacy E . .
side effects Simvastatin Analyzmg a multimodal graph

) = A of interactions

r ——fA Mupirocin * Drug-drug
* Drug-protein
* Protein-protein

£ Doxycycline
=

Ciprofloxacin

=

A Drug  © Protein ry Gastrointestinal bleed side effect A—@ Drug-protein interaction

E Node feature vector T2 Bradycardia side effect @—@ Protein-protein interaction

Zitnik, Agrawal, Leskovec, Bioinformatics 2018




Confederation of Laboratories for
Artificial Intelligence Research in Europe

Al

Drug Repurposing with Deep Graph Networks

d € D
")S{’ —> (S > B,
Interaction
2 f A .
pp € P C ‘P—)-[ forot ——> hm [ - ] No Interaction
: : )
Pm € P C (P_)'[ fpmt —> hPm




AI Confederation of Laboratories for
Artificial Intelligence Research in Europe

Protein embedding module

o Proteins represented by GO

inp

terms /_*_\

° Appll@d Node2Vec to the 3 DAGS Cellular Component ~ Molecular Function  Biological Process
representing the GOs Qﬁ 1 E
« Pretrained module = =

J

N

Ez 52 Ez

hSC @D RMFQIIB  hEP CHD

e

h,, (@D (TS 0D




Relational Stock
Learning

@) ? @) Ranking Scores

I
[ Fc || Fc | Prediction Layer
1 1

Relational
Embedding Layer

Sequential
Embedding Layer

LSTM LSTM | - | LSTM

l I

D D II Sequential Inputs

AAPL GOOGL FB

87



Knowledge graphs

City

Ca
. &
<<./\g{‘e\ Toh,e\ ar: /

is located in N
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Schlichtkrull et al,
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Few Shot Learning with Knowledge
Graphs
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Point Clouds — Semantic Segmentation

Build point cloud graphs and
train semantic class predictors
based on vertex embeddings

Landrieu, Simonovsky, CVPR 2018
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Dinella, ICLR 2020

Code Correction as Graph Operations

Graph Embedding AST Embeddings Value Embeddings o oL
ODIXIONce XXxxxxm o Global value dictionary Global type dictionary

replace

Modify Graph  ZIIEC I TTTTITPRN TR NSRRI PRI P AR PR Modify Graph

® 6 --—— .
Terminals Non-terminals  Local Value link  ASTedge  Suce link _- =
Values -
N Graph Editor
function add(a) { a + b; } function add(a, b) { a + b; } function add(a, b) { return a + b; } Text Editor
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Conclusions
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< Deep learning for graphs is a research topic that is entering its consolidation phase
< Many works sharing same underlying idea (adjacency, contractive, contextual)
< Much early work left unacknowledged and reinvented

< What should we focus on?

< Theoretical characterization and properties of operators (machine learning + graph
theory)

< Efficiency and efficacy of context creation and propagation (unsupervised, gradient
issues, reinforcement learning & graphs)

< Research directions (pooling, generative, transduction, expressivity, scalability,
interpretability)

< Applications (biomedical, software and ICT systems, large scale interaction networks)

< A candidate Al model for the integration of symbolic knowledge and numerical data
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October 8-10 2021
Co-organized by: C. Alippi, D. Bacciu, F.M Bianchi, B. Paassen

IEEE NNTC Task Force on Learning for Structured Data
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Advertisement Time

A tutorial paper reviewing the deep learning for graph area

D. Bacciu, F. Errica, A. Micheli, M. Podda, A Gentle Introduction to Deep Learning for
Graphs, Neural Networks, 2020, Arxiv

p?D I Our Python library for Deep Graph Networks
G h github.com/diningphil/PyDGN

Upcoming Tutorials

IJCNN 2021 (23 July) — Deep learning for Graphs



arxiv.org/abs/1912.12693
github.com/diningphil/PyDGN

Thank youl!
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