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Introduction

Data frequency and probability

We have considered frequent itemsets
to infer association rules (i.e. discover
knowledge) from a transactional
database (TDB).

How is frequency related to probability?

TID Items

1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
3 Milk, Diapers, Beer, Coke
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Coke

The support of itemset A in TDB is the fraction of transactions with A:

supp(A) =
#transactions(A)

#transactions

=
n(A)

n

where # means ‘the number n of’ (e.g. supp(bread) = 4/5).

Laws of large numbers

The frequency of observing event E in n independent and identically
distributed (i.i.d.) experiments converges (in some sense) to the
probability of E:

n(E)

n
→ P (E) as n→∞
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Introduction

Brief history of probability theory

1654 Blaise Pascal and Pierre Fermat discuss games of chance.

1657 Christian Huygens publishes On Ratiocination in Dice Games.

1760 Thomas Bayes defines conditional probability.

1812 Pierre-Simon Laplace (principle of insufficient reason).

1932 John von Neumann’s Mathematical Foundations of Quantum
Mechanics.

1933 Andrey Kolmogorov’s formulates axioms of probability.

1920–1940 Ronald Fisher, Abraham Wald (work statistics).

1948 Claude Shannon (information theory).

1965 Value of information theory (Stratonovich).

1970-80 Information geometry (e.g. Chentsov, Amari).
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Introduction

Sources of uncertainty

Complexity : the number of possible states of a system in question can
be too large (e.g. predict how a chess game can develop
after 10 moves?)

Ignorance : some important information about the system may not be
available.

Randomness : the system may be random by nature, and thus the
uncertainty is irreducible.
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Probability of an event Set-theoretic intuition

What is probability?

Definition (Probability of event E)

the measure P (E) of certainty that event E will occur and ranging from
P (E) = 0 (impossible) to P (E) = 1 (certain):

(Impossible) 0 ≤ P (E) ≤ 1 (Certain)

Example (Fair coin)

For a fair coin, P (heads) = 1
2 = 0.5

Example (Dice)

For a fair die, P (6) = 1
6
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Probability of an event Set-theoretic intuition

Set-theoretic intuition

Events E are considered as subsets of
the universal set U :

E ⊆ U

Probability of E is a measure of a
subset E ⊆ U .

Probabilities of negation (not E),
disjunction (A or B) and conjunction
(A and B):

P (Ē) = P (U−E) , P (A∪B) , P (A∩B)

U

E

Universal set

Because the unvierse is certain, we set

P (U) = 1
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Probability of an event Set-theoretic intuition

Additivity of probabilities

For disjoint events A ∩B = ∅:

P (A or B) = P (A) + P (B)

For n disjoint events such that
E1 ∪ E2 ∪ · · · ∪ En = U

P (E1)+P (E2)+· · ·+P (En) = P (U) = 1

A B

Example

For a fair coin and a fair dice we have

1

2
+

1

2
= 1

1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
= 1
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Probability of an event Set-theoretic intuition

Probability of negation

Probability of E not happening, is the
measure of the complement of E:

P (notE) = P (U − E)

We can show that

P (notE) = 1− P (E)

Because

P (E or not E) = P (U) = 1

P (E or not E) = P (E) + P (notE)

not E

E

Empty set

P (∅) = P (notU) = 1− P (U) = 0
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Probability of an event Set-theoretic intuition

Joint probability

Co-occurrence of events A and B
together (e.g. clouds and rain) is their
set intersection: A ∩B.

Probability of A ∩B is called joint
probability:

P (A ∩B)

Often denoted simply P (A,B).

A B

Example (Two coins)

A B

heads heads
heads tails
tails heads
tails tails

Example (Bread and milk)

TID Items

1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
3 Milk, Diapers, Beer, Coke
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Coke
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Probability of an event Set-theoretic intuition

Probability of union

Probability of A or B is:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

We subtract P (A ∩B), because
otherwise we count it twice.

Check for P (A ∩B) = ∅.

A B

Example (Bread or milk)

P (bread) = 4/5 and P (milk) = 4/5

What is P (bread ∪milk)?

Using P (bread ∩milk) = 3/5 we have

P (bread ∪milk) =
4

5
+

4

5
− 3

5
= 1
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Probability of an event Probability distributions

Probability distributions

TID Items

1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
3 Milk, Diapers, Beer, Coke
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Coke

Consider events: ‘item x belongs to a
transaction T ’

What are their probabilities?

For example, coke appears 2 out of 18
items bought

P (coke ∈ T ) =
2

18
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6
Probability distribution is the collection of probabilities of all such events:
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Probability of an event Probability distributions

Random variables and their distributions

For a random variable x, such as ‘stock price’ or ‘return’, we can
consider events:

x ≤ 100 , x ≥ 10 , x ∈ [10, 100]

We can find probabilties of these events from their distributions.

Distribution of Tesla prices
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Probability of an event Probability distributions

Random variables and their distributions

For a random variable x, such as ‘stock price’ or ‘return’, we can
consider events:

x ≤ 100 , x ≥ 10 , x ∈ [10, 100]
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Probability of an event Probability distributions

Information-geometruc view

The set P(Ω) of all
probability measures on
Ω is a simplex:

P(Ω) := {p : p ≥ 0 , Ep{1} = 1}

Can be defined for
infinite Ω.

Representations of p ∈ P
by δ ∈ extP are unique.

Quantum P(Ω) is not a
simplex.

ω3

ω1ω2
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Probability of an event Moments and characteristics of distributions

Measures of location

Answer questions such as ‘What is the most probable value?’, ‘What
is the most typical value?’, What value should I expect in the long
term?’

If variable x has n possible values X1, X2,...,Xn with probabilities
P (X1), P (X2),...,P (Xn), then the expected value is

E{x} = X1P (X1) +X2P (X2) + · · ·+XnP (Xn) =
n∑

i=1

Xi P (Xi)

If all P (x) = 1
n , then E{x} is the same as mean value (i.e. average).

Example

Let Age = {21, 18, 50, 23, 40} and P (Age) = 1
5 . Then the mean age is

E{Age} =
21 + 18 + 50 + 23 + 40

5
= 30, 4
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Probability of an event Moments and characteristics of distributions

Measures of Dispersion

Answer questions such as ‘What is the range of the variable?’, ‘How
far can it deviate from the mean?’, ‘What risk is associated with the
variable?’

An absolute and squared deviation from the mean is respectively:

|x− E{x}| and |x− E{x}|2

We can compute the mean values of these deviations.

The average squared deviation is called variance:

Var{x} = E
{
|x− E{x}|2

}
Its square root is called standard deviation: Sd{x} =

√
Var{x}
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Probability of an event Moments and characteristics of distributions

Distribution vs Moments

P (ω) gives us all moments of x : A ⊆ 2Ω → R:

EP {x} , EP {x2} , EP {x3} . . .

Note that

E{xn} =
1

in
∂nΘ(u)

∂un

∣∣∣∣
u=0

of the characteristic function Θ(u) = EP {eiux}.
Θ(u) is Fourier transform of P , so that

P (x) =
1

2π

∫
U

Θ(u)e−ixu du

What is better: To know P (x) or to know moments EP {xn}?
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What is better: To know P (x) or to know moments EP {xn}?
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Probability of an event Moments and characteristics of distributions

KL-divergence and Γ(u) = ln Θ(u)

The KL-divergence
between p, q ∈ P(Ω):

DKL[p, q] := EP {ln(p/q)}

Its Legendre-Fenchel
transform is the
kumulant generating
function Γ[u] := ln Θ(u):

Γ[u] = sup
p
{Ep{u}−DKL[p, q]}

ω3

ω1ω2

q

Ep{ln(p/q)} ≤ λ
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Conditional probability and independence
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Conditional probability and independence

Joint probability

Co-occurrence of events A and B
together (e.g. clouds and rain) is their
set intersection: A ∩B.

Probability of A ∩B is called joint
probability:

P (A ∩B)

Often denoted simply P (A,B).

A B

Example (Two independent fair coins)

Coin A = {head, tail}
Coin B = {head, tail} P (A ∩B) =

 head tail

head 1/4 1/4
tail 1/4 1/4


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Conditional probability and independence

Marginal probabilities

Probabilities P (A) or P (B) are sometimes called marginal, because they
can be obtained from joint probability P (A ∩B) by summation:

P (A) =
∑
b∈B

P (A ∩B) , P (B) =
∑
a∈A

P (A ∩B)

Example (Two independent fair coins)

P (A ∩B) =

 head tail

head 1/4 1/4
tail 1/4 1/4



P (A) =

 head 1/2
tail 1/2


P (B) =

[
head tail

1/2 1/2

]
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Conditional probability and independence

Marginal probabilities

Probabilities P (A) or P (B) are sometimes called marginal, because they
can be obtained from joint probability P (A ∩B) by summation:

P (A) =
∑
b∈B

P (A ∩B) , P (B) =
∑
a∈A

P (A ∩B)

Example (Clouds and rain)

P (A ∩B) =

 no rain rain

no clouds 1/2 0
clouds 3/10 1/5



P (A) =

 no clouds 1/2
clouds 1/2


P (B) =

[
no rain rain

4/5 1/5

]
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Conditional probability and independence

Conditional probability

Question

How likely is it to rain if you see clouds?

Definition (Conditional probability)

The probability of event A conditioned on the outcome of B:

P (A | B)

The condition on B can be understood as ‘B has already happened’
or as an assumption that you ‘know the outcome of B’.

Example (Clouds and rain)

For A = {clouds, clear sky} and B = {rain, no rain}, we can consider

P (rain | clouds)

Is it the same as P (rain)?
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Conditional probability and independence

Independence
Conditional probability is used to define the statistical dependence.

Events A and B are independent if (and only if):

P (A | B) = P (A) or P (B | A) = P (B)

This means B does not change the chance of A (and vice versa).
Knowledge about B does not add any information about A (i.e. does
not reduce uncertainty about A).
Otherwise, if

P (A | B) 6= P (A) or P (B | A) 6= P (B)

events A and B are said to be statistically dependent.

Example (Clouds and rain)

If you believe that rain is not possible without clouds, then

P (clouds | rain) = 1

, but P (clouds) 6= 1
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Conditional probability and independence

Conditional probability formula

From the decomposition of joint probability P (A ∩B):

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A)

We also obtain the formulae for the conditional probabilities:

P (A | B) =
P (A ∩B)

P (B)
and P (B | A) =

P (A ∩B)

P (A)

Compare with rule’s confidence: conf(B ⇐= A) = supp(A)∩supp(B)
supp(A)

Example

In the TDB example, we saw

P (Milk | Bread) =
3

4
=

3/5

4/5
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Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).

It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).

It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5

R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Bayes’ rule
Look at these two decompositions of joint probability P (A ∩B)

P (A | B)P (B) = P (B | A)P (B)

Divide both sides by P (B) or by P (A) and obtain the formula:

P (A | B) =
P (B | A)P (A)

P (B)

It is called the Bayes’ rule (due to Thomas Bayes, 1763).
It relates two conditional probabilities P (A | B) with P (B | A).
It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

What is P (rain | clouds) =?

Assuming P (clouds | rain) = 1 and P (rain) = 1/5, P (clouds) = 1/2

P (rain | clouds) =
1× 1/5

1/2
=

2

5
R. Belavkin Probability and Information July 22, 2021 31 / 37



Conditional probability and independence

Another view on independence

The joint probability P (A ∩B) (i.e. probability of A and B)

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A)

for independent A and B becomes simply

P (A ∩B) = P (A)P (B)

Because P (A | B) = P (A) if A and B are independent.

Example (Two independent fair coins)

P (A ∩B) =

 head tail

head 1/4 1/4
tail 1/4 1/4

 P (A) =

 head 1/2
tail 1/2


P (B) =

[
head tail

1/2 1/2

]

P (head, tail) =
1

2
× 1

2
=

1

4
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Entropy and information

Probability and surprise

If P (E) is the probability of event E, then the logarithm of 1/P (E)
is a measure of surprise associated with observing E:

h(E) = log
1

P (E)
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It also represents the amount of information associated with E.

When probability P (E) is high (e.g. P (E) = 1), then there is no
surprise (not much information), and vice versa.

The average (expected) surprise is called entropy:

H(E) = −E{logP (E)}

It is usually thought of as a measure of uncertainty, but it is also a
measure of potential information.
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Entropy and information

Mutual information

The logarithm of the ratio of P (A | B) and P (A) is called random
mutual information:

i(A,B) = log
P (A | B)

P (A)

Notice that i(A,B) = 0 iff P (A | B) = P (A) (because log 1 = 0).

The conditional probability can be expressed as

P (A | B) = P (A) ei(A,B)

ei(A,B) represents dependency between A and B (because e0 = 1).

The average (expected) value of i(A,B) is called (Shannon’s) mutual
information:

I(A,B) = E
{

log
P (A | B)

P (A)

}

= H(A)︸ ︷︷ ︸
prior uncert.

− H(A | B)︸ ︷︷ ︸
posterior uncert. (after B)

Thus, information is the amount by which uncertainty is reduced.
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