Probability and Information

Roman V. Belavkin

Faculty of Science and Technology Middlesex University, London NW4 4BT, UK

> July 19, 2021 ACDL 2021

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distributions

Conditional probability and independence

Entropy and information

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distributions

Conditional probability and independence

Entropy and information

 We have considered frequent itemsets to infer association rules (i.e. discover knowledge) from a transactional database (TDB).

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- We have considered frequent itemsets to infer association rules (i.e. discover knowledge) from a transactional database (TDB).
- How is frequency related to probability?

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- We have considered frequent itemsets to infer association rules (i.e. discover knowledge) from a transactional database (TDB).
- How is frequency related to probability?

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

 We have considered frequent itemsets to infer association rules (i.e. discover knowledge) from a transactional database (TDB).

Items
Bread, Milk
Bread, Diapers, Beer, Eggs
Milk, Diapers, Beer, Coke
Bread, Milk, Diapers, Beer
Bread, Milk, Diapers, Coke

• How is frequency related to probability?

The support of itemset A in TDB is the fraction of transactions with A:

$$supp(A) = \frac{\#transactions(A)}{\#transactions} = \frac{n(A)}{n}$$

where # means 'the number n of' (e.g. supp(bread) = 4/5).

 We have considered frequent itemsets to infer association rules (i.e. discover knowledge) from a transactional database (TDB).

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

• How is frequency related to probability?
The support of itemset 4 in TDB is the fraction of trans-

The support of itemset A in TDB is the fraction of transactions with A:

$$\operatorname{supp}(A) = \frac{\#\operatorname{transactions}(A)}{\#\operatorname{transactions}} = \frac{n(A)}{n}$$

where # means 'the number n of' (e.g. $\mathrm{supp}(\mathsf{bread}) = 4/5$).

Laws of large numbers

The frequency of observing event E in n independent and identically distributed (i.i.d.) experiments converges (in some sense) to the probability of E:

$$\frac{n(E)}{n} \to P(E)$$
 as $n \to \infty$

1654 Blaise Pascal and Pierre Fermat discuss games of chance.

1654 Blaise Pascal and Pierre Fermat discuss games of chance.1657 Christian Huygens publishes *On Ratiocination in Dice Games*.

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes *On Ratiocination in Dice Games*.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes *On Ratiocination in Dice Games*.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.
- 1933 Andrey Kolmogorov's formulates axioms of probability.

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.
- 1933 Andrey Kolmogorov's formulates axioms of probability.
- 1920-1940 Ronald Fisher, Abraham Wald (work statistics).

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.
- 1933 Andrey Kolmogorov's formulates axioms of probability.
- 1920–1940 Ronald Fisher, Abraham Wald (work statistics).
 - 1948 Claude Shannon (information theory).

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.
- 1933 Andrey Kolmogorov's formulates axioms of probability.
- 1920-1940 Ronald Fisher, Abraham Wald (work statistics).
 - 1948 Claude Shannon (information theory).
 - 1965 Value of information theory (Stratonovich).

- 1654 Blaise Pascal and Pierre Fermat discuss games of chance.
- 1657 Christian Huygens publishes On Ratiocination in Dice Games.
- 1760 Thomas Bayes defines conditional probability.
- 1812 Pierre-Simon Laplace (principle of insufficient reason).
- 1932 John von Neumann's *Mathematical Foundations of Quantum Mechanics*.
- 1933 Andrey Kolmogorov's formulates axioms of probability.
- 1920-1940 Ronald Fisher, Abraham Wald (work statistics).
 - 1948 Claude Shannon (information theory).
 - 1965 Value of information theory (Stratonovich).
 - 1970-80 Information geometry (e.g. Chentsov, Amari).

Sources of uncertainty

Complexity: the number of possible states of a system in question can be too large (e.g. predict how a chess game can develop after 10 moves?)

Sources of uncertainty

Complexity: the number of possible states of a system in question can be too large (e.g. predict how a chess game can develop after 10 moves?)

Ignorance: some important information about the system may not be available.

Sources of uncertainty

Complexity: the number of possible states of a system in question can be too large (e.g. predict how a chess game can develop after 10 moves?)

Ignorance: some important information about the system may not be available.

Randomness: the system may be random by nature, and thus the uncertainty is irreducible.

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distributions

Conditional probability and independence

Entropy and information

What is probability?

Definition (Probability of event E)

the measure P(E) of certainty that event E will occur and ranging from P(E) = 0 (impossible) to P(E) = 1 (certain):

(Impossible)
$$0 \le P(E) \le 1$$
 (Certain)

What is probability?

Definition (Probability of event E)

the measure P(E) of certainty that event E will occur and ranging from P(E) = 0 (impossible) to P(E) = 1 (certain):

(Impossible)
$$0 \le P(E) \le 1$$
 (Certain)

Example (Fair coin)

For a fair coin,
$$P(\text{heads}) = \frac{1}{2} = 0.5$$

What is probability?

Definition (Probability of event E)

the measure P(E) of certainty that event E will occur and ranging from P(E) = 0 (impossible) to P(E) = 1 (certain):

(Impossible)
$$0 \le P(E) \le 1$$
 (Certain)

Example (Fair coin)

For a fair coin,
$$P({\rm heads})=\frac{1}{2}=0.5$$

Example (Dice)

For a fair die,
$$P(6) = \frac{1}{6}$$

ullet Events E are considered as subsets of the universal set U:

 $E\subseteq U$

• Events E are considered as subsets of the universal set U:

$$E \subseteq U$$

ullet Probability of E is a measure of a subset $E \subseteq U$.

 Events E are considered as subsets of the universal set U:

$$E \subseteq U$$

- Probability of E is a measure of a subset $E \subseteq U$.
- Probabilities of negation (not E), disjunction (A or B) and conjunction (A and B):

$$P(\bar{E}) = P(U-E), \quad P(A \cup B), \quad P(A \cap B)$$

 Events E are considered as subsets of the universal set U:

$$E \subseteq U$$

- Probability of E is a measure of a subset $E \subseteq U$.
- Probabilities of negation (not E), disjunction (A or B) and conjunction (A and B):

$$P(\bar{E}) = P(U-E), \quad P(A \cup B), \quad P(A \cap B)$$

Universal set

Because the unvierse is certain, we set

Additivity of probabilities

• For disjoint events $A \cap B = \emptyset$:

$$P(A \text{ or } B) = P(A) + P(B)$$

Additivity of probabilities

• For disjoint events $A \cap B = \emptyset$:

$$P(A \text{ or } B) = P(A) + P(B)$$

• For *n* disjoint events such that $E_1 \cup E_2 \cup \cdots \cup E_n = U$

$$P(E_1) + P(E_2) + \dots + P(E_n) = P(U) = 1$$

Additivity of probabilities

• For disjoint events $A \cap B = \emptyset$:

$$P(A \text{ or } B) = P(A) + P(B)$$

• For n disjoint events such that $E_1 \cup E_2 \cup \cdots \cup E_n = U$

$$P(E_1) + P(E_2) + \cdots + P(E_n) = P(U) = 1$$

Example

For a fair coin and a fair dice we have

$$\frac{1}{2} + \frac{1}{2} = 1 \qquad \qquad \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

 \bullet Probability of E not happening, is the measure of the complement of E:

$$P(\mathsf{not}E) = P(U - E)$$

 \bullet Probability of E not happening, is the measure of the complement of E:

$$P(\mathsf{not}E) = P(U - E)$$

We can show that

$$P(\mathsf{not}E) = 1 - P(E)$$

 \bullet Probability of E not happening, is the measure of the complement of E:

$$P(\mathsf{not} E) = P(U - E)$$

We can show that

$$P(\mathsf{not}E) = 1 - P(E)$$

Because

$$\begin{split} P(E \text{ or not } E) &= P(U) = 1 \\ P(E \text{ or not } E) &= P(E) + P(\text{not} E) \end{split}$$

 \bullet Probability of E not happening, is the measure of the complement of E:

$$P(\mathsf{not} E) = P(U - E)$$

We can show that

$$P(\mathsf{not}E) = 1 - P(E)$$

Because

$$P(E \text{ or not } E) = P(U) = 1$$

 $P(E \text{ or not } E) = P(E) + P(\text{not}E)$

Empty set

$$P(\varnothing) = P(\mathsf{not}U) = 1 - P(U) = 0$$

R. Belavkin

 Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of $A \cap B$ is called joint probability:

 $P(A \cap B)$

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of $A \cap B$ is called joint probability:

$$P(A \cap B)$$

• Often denoted simply P(A, B).

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of $A \cap B$ is called joint probability:

$$P(A \cap B)$$

• Often denoted simply P(A, B).

Example (Two coins)

A	B
heads	heads
heads	tails
tails	heads
tails	tails

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of $A \cap B$ is called joint probability:

$$P(A \cap B)$$

• Often denoted simply P(A, B).

Example (Two coins)

A	B	
heads	heads	
heads	tails	
tails	heads	
tails	tails	

Example (Bread and milk)

	,
TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

 \bullet Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 \bullet Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• We subtract $P(A \cap B)$, because otherwise we count it twice.

 \bullet Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- We subtract $P(A \cap B)$, because otherwise we count it twice.
- Check for $P(A \cap B) = \emptyset$.

• Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- We subtract $P(A \cap B)$, because otherwise we count it twice.
- Check for $P(A \cap B) = \emptyset$.

• P(bread) = 4/5 and P(milk) = 4/5

• Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- We subtract $P(A \cap B)$, because otherwise we count it twice.
- Check for $P(A \cap B) = \emptyset$.

Example (Bread or milk)

- P(bread) = 4/5 and P(milk) = 4/5
- What is $P(bread \cup milk)$?

• Probability of A or B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- We subtract $P(A \cap B)$, because otherwise we count it twice.
- Check for $P(A \cap B) = \emptyset$.

Example (Bread or milk)

- P(bread) = 4/5 and P(milk) = 4/5
- What is $P(bread \cup milk)$?
- Using $P(\mathsf{bread} \cap \mathsf{milk}) = 3/5$ we have

$$P(\operatorname{bread} \cup \operatorname{milk}) = \frac{4}{5} + \frac{4}{5} - \frac{3}{5} = 1$$

TID Items

1 Bread, Milk

2 Bread, Diapers, Beer, Eggs

3 Milk, Diapers, Beer, Coke

4 Bread, Milk, Diapers, Beer

5 Bread, Milk, Diapers, Coke

• Consider events: 'item x belongs to a transaction T'

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider events: 'item x belongs to a transaction T'
- What are their probabilities?

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider events: 'item x belongs to a transaction T'
- What are their probabilities?
- For example, coke appears 2 out of 18 items bought

$$P(\mathsf{coke} \in T) = \frac{2}{18} = \frac{1}{6}$$

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider events: 'item x belongs to a transaction T'
- What are their probabilities?
- For example, coke appears 2 out of 18 items bought

$$P(\mathsf{coke} \in T) = \frac{2}{18} = \frac{1}{6}$$

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider events: 'item x belongs to a transaction T'
- What are their probabilities?
- For example, coke appears 2 out of 18 items bought

$$P(\mathsf{coke} \in T) = \frac{2}{18} = \frac{1}{6}$$

Probability distribution is the collection of probabilities of all such events:

TID	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider events: 'item x belongs to a transaction T'
- What are their probabilities?
- For example, coke appears 2 out of 18 items bought

$$P(\mathsf{coke} \in T) = \frac{2}{18} = \frac{1}{6}$$

Probability distribution is the collection of probabilities of all such events:

• For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

 For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

• We can find probabilties of these events from their distributions.

 \bullet For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100, \qquad x \ge 10, \quad x \in [10, 100]$$

We can find probabilties of these events from their distributions.

Distribution of Tesla prices

ullet For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

We can find probabilties of these events from their distributions.

Distribution of Tesla prices

• For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

• We can find probabilties of these events from their distributions.

Distribution of Tesla returns

ullet For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

• We can find probabilties of these events from their distributions.

Distribution of Tesla returns

 \bullet For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

We can find probabilties of these events from their distributions.

Distribution of Bitcoin prices

 For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \leq 100 \,, \qquad x \geq 10 \,, \quad x \in [10, 100]$$

We can find probabilties of these events from their distributions.

Distribution of Bitcoin prices

• For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

• We can find probabilties of these events from their distributions.

Distribution of Bitcoin returns

• For a random variable x, such as 'stock price' or 'return', we can consider events:

$$x \le 100$$
, $x \ge 10$, $x \in [10, 100]$

• We can find probabilties of these events from their distributions.

Distribution of Bitcoin returns

• The set $\mathcal{P}(\Omega)$ of all probability measures on Ω is a simplex:

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p\{1\} = 1 \}$$

 ω_3

• The set $\mathcal{P}(\Omega)$ of all probability measures on Ω is a simplex:

$$\mathcal{P}(\Omega) := \{ p : p \ge 0, \ \mathbb{E}_p\{1\} = 1 \}$$

• Can be defined for infinite Ω .

 ω_3

• The set $\mathcal{P}(\Omega)$ of all probability measures on Ω is a simplex:

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p \{ 1 \} = 1 \}$$

- Can be defined for infinite Ω .
- Representations of $p \in \mathcal{P}$ by $\delta \in \operatorname{ext} \mathcal{P}$ are unique.

 ω_3

• The set $\mathcal{P}(\Omega)$ of all probability measures on Ω is a simplex:

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p\{1\} = 1 \}$$

- Can be defined for infinite Ω .
- Representations of $p \in \mathcal{P}$ by $\delta \in \operatorname{ext} \mathcal{P}$ are unique.
- Quantum $\mathcal{P}(\Omega)$ is not a simplex.

• The set $\mathcal{P}(\Omega)$ of all probability measures on Ω is a simplex:

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p\{1\} = 1 \}$$

- Can be defined for infinite Ω .
- Representations of $p \in \mathcal{P}$ by $\delta \in \operatorname{ext} \mathcal{P}$ are unique.
- Quantum $\mathcal{P}(\Omega)$ is not a simplex.

 Answer questions such as 'What is the most probable value?', 'What is the most typical value?', What value should I expect in the long term?'

- Answer questions such as 'What is the most probable value?', 'What is the most typical value?', What value should I expect in the long term?'
- If variable x has n possible values X_1 , X_2 ,..., X_n with probabilities $P(X_1)$, $P(X_2)$,..., $P(X_n)$, then the expected value is

$$\mathbb{E}\{x\} = X_1 P(X_1) + X_2 P(X_2) + \dots + X_n P(X_n) = \sum_{i=1}^n X_i P(X_i)$$

- Answer questions such as 'What is the most probable value?', 'What is the most typical value?', What value should I expect in the long term?'
- If variable x has n possible values X_1 , X_2 ,..., X_n with probabilities $P(X_1)$, $P(X_2)$,..., $P(X_n)$, then the expected value is

$$\mathbb{E}\{x\} = X_1 P(X_1) + X_2 P(X_2) + \dots + X_n P(X_n) = \sum_{i=1}^n X_i P(X_i)$$

• If all $P(x) = \frac{1}{n}$, then $\mathbb{E}\{x\}$ is the same as mean value (i.e. average).

- Answer questions such as 'What is the most probable value?', 'What is the most typical value?', What value should I expect in the long term?'
- If variable x has n possible values X_1 , X_2 ,..., X_n with probabilities $P(X_1)$, $P(X_2)$,..., $P(X_n)$, then the expected value is

$$\mathbb{E}\{x\} = X_1 P(X_1) + X_2 P(X_2) + \dots + X_n P(X_n) = \sum_{i=1}^n X_i P(X_i)$$

• If all $P(x) = \frac{1}{n}$, then $\mathbb{E}\{x\}$ is the same as mean value (i.e. average).

Measures of location

- Answer questions such as 'What is the most probable value?', 'What is the most typical value?', What value should I expect in the long term?'
- If variable x has n possible values X_1 , X_2 ,..., X_n with probabilities $P(X_1)$, $P(X_2)$,..., $P(X_n)$, then the expected value is

$$\mathbb{E}\{x\} = X_1 P(X_1) + X_2 P(X_2) + \dots + X_n P(X_n) = \sum_{i=1}^n X_i P(X_i)$$

• If all $P(x) = \frac{1}{n}$, then $\mathbb{E}\{x\}$ is the same as mean value (i.e. average).

Example

Let $\mathrm{Age}=\{21,18,50,23,40\}$ and $P(\mathrm{Age})=\frac{1}{5}.$ Then the mean age is

$$E\{{\rm Age}\} = \frac{21+18+50+23+40}{5} = 30,4$$

R. Belavkin

 Answer questions such as 'What is the range of the variable?', 'How far can it deviate from the mean?', 'What risk is associated with the variable?'

- Answer questions such as 'What is the range of the variable?', 'How far can it deviate from the mean?', 'What risk is associated with the variable?'
- An absolute and squared deviation from the mean is respectively:

$$|x - \mathbb{E}\{x\}|$$
 and $|x - \mathbb{E}\{x\}|^2$

- Answer questions such as 'What is the range of the variable?', 'How far can it deviate from the mean?', 'What risk is associated with the variable?'
- An absolute and squared deviation from the mean is respectively:

$$|x - \mathbb{E}\{x\}|$$
 and $|x - \mathbb{E}\{x\}|^2$

We can compute the mean values of these deviations.

- Answer questions such as 'What is the range of the variable?', 'How far can it deviate from the mean?', 'What risk is associated with the variable?'
- An absolute and squared deviation from the mean is respectively:

$$|x - \mathbb{E}\{x\}|$$
 and $|x - \mathbb{E}\{x\}|^2$

- We can compute the mean values of these deviations.
- The average squared deviation is called variance:

$$Var\{x\} = \mathbb{E}\{|x - \mathbb{E}\{x\}|^2\}$$

- Answer questions such as 'What is the range of the variable?', 'How
 far can it deviate from the mean?', 'What risk is associated with the
 variable?'
- An absolute and squared deviation from the mean is respectively:

$$|x - \mathbb{E}\{x\}|$$
 and $|x - \mathbb{E}\{x\}|^2$

- We can compute the mean values of these deviations.
- The average squared deviation is called variance:

$$Var\{x\} = \mathbb{E}\left\{|x - \mathbb{E}\{x\}|^2\right\}$$

• Its square root is called standard deviation: $\mathrm{Sd}\{x\} = \sqrt{\mathrm{Var}\{x\}}$

• $P(\omega)$ gives us all moments of $x: \mathcal{A} \subseteq 2^{\Omega} \to \mathbb{R}$:

$$\mathbb{E}_P\{x\}, \mathbb{E}_P\{x^2\}, \mathbb{E}_P\{x^3\}\dots$$

• $P(\omega)$ gives us all moments of $x: \mathcal{A} \subseteq 2^{\Omega} \to \mathbb{R}$:

$$\mathbb{E}_P\{x\}$$
, $\mathbb{E}_P\{x^2\}$, $\mathbb{E}_P\{x^3\}$...

Note that

$$\mathbb{E}\{x^n\} = \frac{1}{i^n} \frac{\partial^n \Theta(u)}{\partial u^n} \bigg|_{u=0}$$

of the characteristic function $\Theta(u) = \mathbb{E}_P\{e^{iux}\}.$

• $P(\omega)$ gives us all moments of $x: \mathcal{A} \subseteq 2^{\Omega} \to \mathbb{R}$:

$$\mathbb{E}_P\{x\}$$
, $\mathbb{E}_P\{x^2\}$, $\mathbb{E}_P\{x^3\}$...

Note that

$$\mathbb{E}\{x^n\} = \frac{1}{i^n} \frac{\partial^n \Theta(u)}{\partial u^n} \bigg|_{u=0}$$

of the characteristic function $\Theta(u) = \mathbb{E}_P\{e^{iux}\}.$

 \bullet $\Theta(u)$ is Fourier transform of P, so that

$$P(x) = \frac{1}{2\pi} \int_{U} \Theta(u) e^{-ixu} du$$

• $P(\omega)$ gives us all moments of $x: \mathcal{A} \subseteq 2^{\Omega} \to \mathbb{R}$:

$$\mathbb{E}_P\{x\}$$
, $\mathbb{E}_P\{x^2\}$, $\mathbb{E}_P\{x^3\}$...

Note that

$$\mathbb{E}\{x^n\} = \frac{1}{i^n} \frac{\partial^n \Theta(u)}{\partial u^n} \bigg|_{u=0}$$

of the characteristic function $\Theta(u) = \mathbb{E}_P\{e^{iux}\}.$

 \bullet $\Theta(u)$ is Fourier transform of P, so that

$$P(x) = \frac{1}{2\pi} \int_{U} \Theta(u) e^{-ixu} du$$

• What is better: To know P(x) or to know moments $\mathbb{E}_P\{x^n\}$?

R. Belavkin

KL-divergence and $\Gamma(u) = \ln \Theta(u)$

 The KL-divergence between $p, q \in \mathcal{P}(\Omega)$:

$$D_{KL}[p,q] := \mathbb{E}_P\{\ln(p/q)\}$$

 ω_3

 ω_2

KL-divergence and $\Gamma(u) = \ln \Theta(u)$

 The KL-divergence between $p, q \in \mathcal{P}(\Omega)$:

$$D_{KL}[p,q] := \mathbb{E}_P\{\ln(p/q)\}$$

 Its Legendre-Fenchel transform is the kumulant generating function $\Gamma[u] := \ln \Theta(u)$:

$$\Gamma[u] = \sup_{p} \{ \mathbb{E}_{p} \{ u \} - D_{KL}[p, q] \}$$

 ω_3

Conditional probability and independence

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distributions

Conditional probability and independence

Entropy and information

• Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of $A \cap B$ is called joint probability:

$$P(A \cap B)$$

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of A ∩ B is called joint probability:

$$P(A \cap B)$$

• Often denoted simply P(A, B).

- Co-occurrence of events A and B together (e.g. clouds and rain) is their set intersection: $A \cap B$.
- Probability of A ∩ B is called joint probability:

$$P(A \cap B)$$

• Often denoted simply P(A, B).

Coin
$$A = \{\text{head}, \text{tail}\}\$$

Coin $B = \{\text{head}, \text{tail}\}\$

$$P(A \cap B) = \begin{bmatrix} & | \operatorname{head} & \operatorname{tail} \\ \hline | \operatorname{head} & 1/4 & 1/4 \\ \hline | \operatorname{tail} & 1/4 & 1/4 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B), \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B) , \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

$$P(A \cap B) = \begin{bmatrix} & & \mathsf{head} & \mathsf{tail} \\ \hline \mathsf{head} & 1/4 & 1/4 \\ \mathsf{tail} & 1/4 & 1/4 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B), \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

$$P(A\cap B) = \begin{bmatrix} & \frac{\mathsf{head}}{\mathsf{head}} & \mathsf{tail} \\ \hline \mathsf{head} & 1/4 & 1/4 \\ \hline \mathsf{tail} & 1/4 & 1/4 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & & \\ \hline \mathsf{head} & 1/2 \\ \hline \hline \mathsf{tail} & 1/2 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B) \,, \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

$$P(A\cap B) = \begin{bmatrix} & & \mathsf{head} & \mathsf{tail} \\ & \mathsf{head} & 1/4 & 1/4 \\ & \mathsf{tail} & 1/4 & 1/4 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & \mathsf{head} & 1/2 \\ & \mathsf{tail} & 1/2 \end{bmatrix}$$

$$P(B) = \begin{bmatrix} & & \mathsf{head} & \mathsf{tail} \\ & & 1/2 & 1/2 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B) , \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

Example (Clouds and rain)

$$P(A \cap B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & \text{no clouds} & 1/2 & 0 \\ & \text{clouds} & 3/10 & 1/5 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B), \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

Example (Clouds and rain)

$$P(A \cap B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & \text{no clouds} & 1/2 & 0 \\ & \text{clouds} & 3/10 & 1/5 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & & \\ & \text{no clouds} & 1/2 \\ & \text{clouds} & 1/2 \end{bmatrix}$$

Probabilities P(A) or P(B) are sometimes called marginal, because they can be obtained from joint probability $P(A \cap B)$ by summation:

$$P(A) = \sum_{b \in B} P(A \cap B), \qquad P(B) = \sum_{a \in A} P(A \cap B)$$

Example (Clouds and rain)

$$P(A\cap B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & \text{no clouds} & 1/2 & 0 \\ & \text{clouds} & 3/10 & 1/5 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & & \\ & \text{no clouds} & 1/2 \\ & \text{clouds} & 1/2 \end{bmatrix}$$

$$P(B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & & 4/5 & 1/5 \end{bmatrix}$$

Question

How likely is it to rain if you see clouds?

Question

How likely is it to rain if you see clouds?

Definition (Conditional probability)

• The probability of event A conditioned on the outcome of B:

$$P(A \mid B)$$

• The condition on B can be understood as 'B has already happened' or as an assumption that you 'know the outcome of B'.

Question

How likely is it to rain if you see clouds?

Definition (Conditional probability)

• The probability of event A conditioned on the outcome of B:

$$P(A \mid B)$$

• The condition on B can be understood as 'B has already happened' or as an assumption that you 'know the outcome of B'.

Question

How likely is it to rain if you see clouds?

Definition (Conditional probability)

The probability of event A conditioned on the outcome of B:

$$P(A \mid B)$$

 The condition on B can be understood as 'B has already happened' or as an assumption that you 'know the outcome of B'.

Example (Clouds and rain)

ullet For $A = \{ clouds, clear sky \}$ and $B = \{ rain, no rain \}$, we can consider

$$P(rain \mid clouds)$$

• Is it the same as P(rain)?

• Conditional probability is used to define the statistical dependence.

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

ullet This means B does not change the chance of A (and vice versa).

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

- ullet This means B does not change the chance of A (and vice versa).
- Knowledge about B does not add any information about A (i.e. does not reduce uncertainty about A).

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A) \qquad \text{or} \qquad P(B \mid A) = P(B)$$

- ullet This means B does not change the chance of A (and vice versa).
- Knowledge about B does not add any information about A (i.e. does not reduce uncertainty about A).
- Otherwise, if

$$P(A \mid B) \neq P(A)$$
 or $P(B \mid A) \neq P(B)$

events A and B are said to be statistically dependent.

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

- ullet This means B does not change the chance of A (and vice versa).
- Knowledge about B does not add any information about A (i.e. does not reduce uncertainty about A).
- Otherwise, if

$$P(A \mid B) \neq P(A)$$
 or $P(B \mid A) \neq P(B)$

events A and B are said to be statistically dependent.

Example (Clouds and rain)

If you believe that rain is not possible without clouds, then

$$P(\mathsf{clouds} \mid \mathsf{rain}) = 1$$

- Conditional probability is used to define the statistical dependence.
- Events A and B are independent if (and only if):

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

- ullet This means B does not change the chance of A (and vice versa).
- Knowledge about B does not add any information about A (i.e. does not reduce uncertainty about A).
- Otherwise, if

$$P(A \mid B) \neq P(A)$$
 or $P(B \mid A) \neq P(B)$

events A and B are said to be statistically dependent.

Example (Clouds and rain)

If you believe that rain is not possible without clouds, then

$$P(\mathsf{clouds} \mid \mathsf{rain}) = 1$$
, but $P(\mathsf{clouds}) \neq 1$

Conditional probability formula

• From the decomposition of joint probability $P(A \cap B)$:

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Conditional probability formula

• From the decomposition of joint probability $P(A \cap B)$:

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• We also obtain the formulae for the conditional probabilities:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 and $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$

Conditional probability formula

• From the decomposition of joint probability $P(A \cap B)$:

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

We also obtain the formulae for the conditional probabilities:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 and $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$

• Compare with rule's confidence: $conf(B \iff A) = \frac{supp(A) \cap supp(B)}{supp(A)}$

Conditional probability formula

• From the decomposition of joint probability $P(A \cap B)$:

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• We also obtain the formulae for the conditional probabilities:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad \text{and} \qquad P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

• Compare with rule's confidence: $conf(B \iff A) = \frac{supp(A) \cap supp(B)}{supp(A)}$

Example

In the TDB example, we saw

$$P(\mathsf{Milk} \mid \mathsf{Bread}) = \frac{3}{4} = \frac{3/5}{4/5}$$

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

• It is called the Bayes' rule (due to Thomas Bayes, 1763).

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- It is called the Bayes' rule (due to Thomas Bayes, 1763).
- It relates two conditional probabilities $P(A \mid B)$ with $P(B \mid A)$.

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- It is called the Bayes' rule (due to Thomas Bayes, 1763).
- It relates two conditional probabilities $P(A \mid B)$ with $P(B \mid A)$.
- It is important, because often one is easier to estimate than the other.

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

• Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- It is called the Bayes' rule (due to Thomas Bayes, 1763).
- It relates two conditional probabilities $P(A \mid B)$ with $P(B \mid A)$.
- It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

• What is P(rain | clouds) = ?

• Look at these two decompositions of joint probability $P(A \cap B)$

$$P(A \mid B)P(B) = P(B \mid A)P(B)$$

ullet Divide both sides by P(B) or by P(A) and obtain the formula:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- It is called the Bayes' rule (due to Thomas Bayes, 1763).
- ullet It relates two conditional probabilities $P(A \mid B)$ with $P(B \mid A)$.
- It is important, because often one is easier to estimate than the other.

Example (Clouds and rain)

- What is P(rain | clouds) = ?
- Assuming $P(\text{clouds} \mid \text{rain}) = 1$ and P(rain) = 1/5, P(clouds) = 1/2

$$P(\mathsf{rain} \mid \mathsf{clouds}) = \frac{1 \times 1/5}{1/2} = \frac{2}{5}$$

R. Belavkin

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• for independent A and B becomes simply

$$P(A \cap B) = P(A)P(B)$$

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• for independent A and B becomes simply

$$P(A \cap B) = P(A)P(B)$$

• Because $P(A \mid B) = P(A)$ if A and B are independent.

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

for independent A and B becomes simply

$$P(A \cap B) = P(A)P(B)$$

• Because $P(A \mid B) = P(A)$ if A and B are independent.

Example (Two independent fair coins)

$$P(A\cap B) = \begin{bmatrix} & | \operatorname{head} & \operatorname{tail} \\ | \operatorname{head} & 1/4 & 1/4 \\ | \operatorname{tail} & 1/4 & 1/4 \end{bmatrix} \quad P(A) = \begin{bmatrix} & | \\ | \operatorname{head} & 1/2 \\ | \operatorname{tail} & 1/2 \end{bmatrix}$$

$$P(B) = \begin{bmatrix} & | \operatorname{head} & \operatorname{tail} \\ | & 1/2 & 1/2 \end{bmatrix} \quad P(\operatorname{head}, \operatorname{tail}) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

for independent A and B becomes simply

$$P(A \cap B) = P(A)P(B)$$

• Because $P(A \mid B) = P(A)$ if A and B are independent.

Example (Clouds and rain)

$$P(A\cap B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & \text{no clouds} & 1/2 & 0 \\ & \text{clouds} & 3/10 & 1/5 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & & \\ & \text{no clouds} & 1/2 \\ & \text{clouds} & 1/2 \end{bmatrix}$$

$$P(B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & & & 4/5 & 1/5 \end{bmatrix}$$

• The joint probability $P(A \cap B)$ (i.e. probability of A and B)

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• for independent A and B becomes simply

$$P(A \cap B) = P(A)P(B)$$

• Because $P(A \mid B) = P(A)$ if A and B are independent.

Example (Clouds and rain)

$$P(A\cap B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & \text{no clouds} & 1/2 & 0 \\ & \text{clouds} & 3/10 & 1/5 \end{bmatrix} \quad P(A) = \begin{bmatrix} & & & \\ & \text{no clouds} & 1/2 \\ & \text{clouds} & 1/2 \end{bmatrix}$$

$$P(B) = \begin{bmatrix} & & \text{no rain} & \text{rain} \\ & & 4/5 & 1/5 \end{bmatrix} \quad P(\text{no clouds}, \text{rain}) = 0 \neq \frac{1}{2} \times \frac{1}{5}$$

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distributions

Conditional probability and independence

Entropy and information

$$h(E) = \log \frac{1}{P(E)}$$

$$h(E) = \log \frac{1}{P(E)}$$

• If P(E) is the probability of event E, then the logarithm of 1/P(E) is a measure of surprise associated with observing E:

$$h(E) = \log \frac{1}{P(E)}$$

ullet It also represents the amount of information associated with E.

$$h(E) = \log \frac{1}{P(E)}$$

- ullet It also represents the amount of information associated with E.
- When probability P(E) is high (e.g. P(E)=1), then there is no surprise (not much information), and vice versa.

$$h(E) = \log \frac{1}{P(E)}$$

- ullet It also represents the amount of information associated with E.
- When probability P(E) is high (e.g. P(E) = 1), then there is no surprise (not much information), and vice versa.
- The average (expected) surprise is called entropy:

$$H(E) = -\mathbb{E}\{\log P(E)\}\$$

• If P(E) is the probability of event E, then the logarithm of 1/P(E) is a measure of surprise associated with observing E:

$$h(E) = \log \frac{1}{P(E)}$$

- ullet It also represents the amount of information associated with E.
- When probability P(E) is high (e.g. P(E) = 1), then there is no surprise (not much information), and vice versa.
- The average (expected) surprise is called entropy:

$$H(E) = -\mathbb{E}\{\log P(E)\}\$$

• It is usually thought of as a measure of uncertainty, but it is also a measure of potential information.

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

• Notice that i(A,B)=0 iff $P(A\mid B)=P(A)$ (because $\log 1=0$).

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

- Notice that i(A, B) = 0 iff $P(A \mid B) = P(A)$ (because $\log 1 = 0$).
- The conditional probability can be expressed as

$$P(A \mid B) = P(A) e^{i(A,B)}$$

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

- Notice that i(A, B) = 0 iff $P(A \mid B) = P(A)$ (because $\log 1 = 0$).
- The conditional probability can be expressed as

$$P(A \mid B) = P(A) e^{i(A,B)}$$

 \bullet $e^{i(A,B)}$ represents dependency between A and B (because $e^0=1$).

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

- Notice that i(A, B) = 0 iff $P(A \mid B) = P(A)$ (because $\log 1 = 0$).
- The conditional probability can be expressed as

$$P(A \mid B) = P(A) e^{i(A,B)}$$

- $e^{i(A,B)}$ represents dependency between A and B (because $e^0=1$).
- The average (expected) value of i(A,B) is called (Shannon's) mutual information:

$$I(A, B) = \mathbb{E}\left\{\log \frac{P(A \mid B)}{P(A)}\right\}$$

• The logarithm of the ratio of $P(A \mid B)$ and P(A) is called random mutual information:

$$i(A, B) = \log \frac{P(A \mid B)}{P(A)}$$

- Notice that i(A, B) = 0 iff $P(A \mid B) = P(A)$ (because $\log 1 = 0$).
- The conditional probability can be expressed as

$$P(A \mid B) = P(A) e^{i(A,B)}$$

- $e^{i(A,B)}$ represents dependency between A and B (because $e^0=1$).
- The average (expected) value of i(A, B) is called (Shannon's) mutual information:

$$I(A,B) = \mathbb{E}\left\{\log\frac{P(A\mid B)}{P(A)}\right\} = \underbrace{H(A)}_{\text{prior uncert.}} - \underbrace{H(A\mid B)}_{\text{posterior uncert. (after }B)}$$

Thus, information is the amount by which uncertainty is reduced.

R. Belavkin Probability and Information 36 / 37

Introduction

Probability of an event
Set-theoretic intuition
Probability distributions
Moments and characteristics of distribution

Conditional probability and independence

Entropy and information