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Recap: What can we learn to learn?

1. architectures / pipelines  
(hyperparameters, structures) 

Clune 2019

Focus of this part See part 2

From hand-designed to learned learning algorithms  … to AI-generating algorithms?

new tasks  
(of own choosing)

experience

2. learning algorithms  
(priors, task embeddings,…) 

3. learning environments 
(curricula, self-exploration)

bias

https://cims.nyu.edu/~brenden/papers/LakeEtAl2017BBS.pdf


Task 1

Model

Learning 
algorithm

Task: distribution of samples q(x) 
outputs y, loss ℒ(x,y) Task 2

Model

Learning 
algorithm

ℒT1(fɸ1,λ(x),y) ℒT2

x,y x,y

training 
∇ɸ

ɸ’1 ɸ’2

fɸ1(x) fɸ2(x)

Machine Learning

Learner: model parameters ɸ, 
               hyper-parameters λ 
                    

When the new task is quite 
different, (meta-)learn 

the hyper-parameters λ

λ1 λ2

When the new task is quite 
similar, keep λ, 

(meta-)learn the model 
parameters ɸ

Neural architectures, 
pipelines, other 

hyperparameters, … Note: we can also learn λ 
and ɸ at the same time 

(bilevel optimization)



Task Models

performance

Human expert ModelsModels

manual trial and error

(and intuition)

Task Models

performance

Learning and 
optimization ModelsModels

automated, efficient 
search for best models

Manual machine learning

ModelsModelsModels

λ

Automatic Machine Learning (AutoML)
Hutter et al. 2019

λ

AutoML: build models in a data-driven, intelligent, purposeful way

https://cims.nyu.edu/~brenden/papers/LakeEtAl2017BBS.pdf


AutoML example: Pipeline synthesis

Cleaning, preprocessing, feature selection/engineering features, model 
selection, hyperparameter tuning, adapting to concept drift,…

Figure source: Nick Gillian
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- Type of operators 
- Size of layers 
- Filter sizes 
- Skip connections 
- Pre-trained layers 
- Transformers 
- …

- Gradient descent 
hyperparameters 

- Regularization 
- …

AutoML example: Neural Architecture Search

Architecture:

Optimization:

Figure source: Elsken et al., 2018



Task 1..N Models

performance

AutoML ModelsModels

Meta-learn how to design architectures/pipelines and tune hyper parameters 
Human data scientists also learn from experience

ModelsModelsModels

AutoML + meta-learning
Hutter et al. 2019

λ

New task Models

performance

self-learning AutoML Models
λ

bias  
(priors, meta-knowledge, human priors)

Search space can 
be huge!

https://cims.nyu.edu/~brenden/papers/LakeEtAl2017BBS.pdf


Meta-learning for AutoML: how?

Learning hyperparameter priors

Warm starting (what works on similar tasks?)

start randomly

start with 

good candidates

Meta-models (learn how to build models/components)

Complex 

hyperparameter space

Simple 

hyperparameter space

Vanschoren 2018

Task

λ, scores

λ, scores

Learner

Learnermetadata

hyperparameters = architecture + hyperparameters

Task

λ, scores
LearnermetadataTaskTask

https://arxiv.org/abs/1810.03548


Observation:  
current AutoML strongly depends on learned priors

Complex 

hyperparameter space

Simple 

hyperparameter space

observation



Manual architecture priors

• Most successful pipelines have a similar structure

Ensembling/
stacking

Figure source: Feurer et al. 2015 

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf


Manual architecture priors

• Most successful pipelines have a similar structure

+ smaller search space 

- you can’t learn entirely new architectures

• Fix architecture, encode all choices as extra hyperparameters 

• Architecture search becomes hyperparameter optimization

Ensembling/
stacking

Figure source: Feurer et al. 2015 

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf


Manual architecture priors
autosklearn Feurer et al. 2015 

autoWEKA Thornton et al. 2013 
hyperopt-sklearn Komer et al. 2014 

AutoGluon-Tabular Erickson et al. 2020 

• Most successful pipelines have a similar structure

+ smaller search space 

- you can’t learn entirely new architectures

• Fix architecture, encode all choices as extra hyperparameters 

• Architecture search becomes hyperparameter optimization

Ensembling/
stacking

Figure source: Feurer et al. 2015 

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf
https://arxiv.org/abs/1208.3719
http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
https://arxiv.org/abs/2003.06505
https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf


Manual architecture priors
autosklearn Feurer et al. 2015 

autoWEKA Thornton et al. 2013 
hyperopt-sklearn Komer et al. 2014 

AutoGluon-Tabular Erickson et al. 2020 

• Most successful pipelines have a similar structure

+ smaller search space 

- you can’t learn entirely new architectures

• Fix architecture, encode all choices as extra hyperparameters 

• Architecture search becomes hyperparameter optimization

Can we meta-learn a prior 
over successful structures? 

Ensembling/
stacking

Figure source: Feurer et al. 2015 

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf
https://arxiv.org/abs/1208.3719
http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
https://arxiv.org/abs/2003.06505
https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf
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Parameterized Sequential Parameterized Graph

Choose:

• number of layers

• type of layers

• dense

• convolutional

• max-pooling

• …


• hyperparameters of 
layers


+ easier to search 

- sometimes too simple

Choose:

• branching

• joins

• skip connections

• types of layers

• hyperparameters of 

layers


+ more flexible 

- much harder to search

Elsken et al. 2019

Manual architecture priors

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter3.pdf


Successful deep networks often have repeated motifs (cells) 
e.g. Inception v4:

Manual architecture priors

Szegedy

Figure source: Szegedy et al 2016



Google NASNet Zoph et al 2018

Compositionality: learn hierarchical building blocks to simplify the task

• learn parameterized building 
blocks (cells)

• stack cells together in macro-

architecture


+ smaller search space 

+ cells can be learned on a small 
dataset & transferred to a larger 
dataset

- strong domain priors, doesn’t 

generalize well 

Cell search space

Cell search space prior

Figure source: Elsken et al., 2019

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf


Google NASNet Zoph et al 2018

Compositionality: learn hierarchical building blocks to simplify the task

• learn parameterized building 
blocks (cells)

• stack cells together in macro-

architecture


+ smaller search space 

+ cells can be learned on a small 
dataset & transferred to a larger 
dataset

- strong domain priors, doesn’t 

generalize well 

Cell search space

Can we meta-learn hierarchies / components that generalize better? 

Cell search space prior

Figure source: Elsken et al., 2019

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf


NASNet, Zoph et al 2018
Cell search space prior
• Cell construction with RL-based search (SOTA ImageNet, 450 GPUs, 3-4 days):

• Select existing layers (hidden states, e.g. cell input)  to build on


• Add operation (e.g. 3x3conv) on 

• Combine into new hidden state (e.g. concat, add,…)

• Iterate over B blocks

Hi
Hi

Figure source: Zoph et al., 2018

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf


• Cell construction with neuro-evolution (SOTA ImageNet)

AmoebaNet, Real et al 2019

normal cell reduction cell

Cell search space prior

Figure source: Real et al., 2019

https://arxiv.org/pdf/1802.01548.pdf


If you constrain the search space enough, you can get SOTA results with random search!

Li & Talwalkar 2019
Yu et al. 2019

Real et al. 2019
Cell search space prior

• Cell construction with multi-fidelity random search!

Figure source: Li & Talwalkar., 2019

https://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1802.01548


Weight-agnostic neural networks 
• ALL weights are shared 

• Only evolve the architecture?

• Minimal description length

• Baldwin effect?

Manual priors: Weight sharing
Gaier & Ha, 2019

Figure source: Gaier & HA., 2019

https://arxiv.org/abs/1906.04358


Learning hyperparameter priors

Complex 

hyperparameter space

Simple 

hyperparameter space

λ, scores
Learner



1 van Rijn & Hutter 2018

ResNets for image classification

• Functional ANOVA 1                                                                                                                          
• Select hyperparameters that cause 

variance in the evaluations.        
• Useful to speed up black-box 

optimization techniques                          

Learn hyperparameter importance

Figure source: van Rijn & Hutter, 2018

https://arxiv.org/pdf/1710.04725.pdf


• Tunability 1,2,3                                                                                                                       
Learn good defaults, measure importance as improvement via tuning

1 Probst et al. 2018
2 Weerts et al. 2018

3 van Rijn et al. 2018

Learn defaults + hyperparameter importance

Learned defaults Tuning risk

https://arxiv.org/abs/1802.09596
https://arxiv.org/abs/2007.07588
http://metalearning.ml/2018/papers/metalearn2018_paper70.pdf


• Start with a few (random) hyperparameter configurations 
• Fit a surrogate model to predict other configurations 

• Probabilistic regression: mean  and standard deviation  (blue band) 

• Use an acquisition function to trade off exploration and exploitation, e.g. Expected 
Improvement (EI) 

• Sample for the best configuration under that function

μ σ

Bayesian Optimization (interlude)
Mockus, 1974

μ
μ + σ

μ − σ

value of λi

pe
rfo

rm
an

ce

https://link.springer.com/chapter/10.1007/3-540-07165-2_55


• Repeat until some stopping 
criterion: 
• Fixed budget 
• Convergence 
• EI threshold 

• Theoretical guarantees 

• Also works for non-convex, 
noisy data 

• Used in AlphaGo

Srinivas et al. 2010, Freitas et al. 2012, 
Kawaguchi et al. 2016

Bayesian Optimization

Figure source: Shahriari 2016

https://arxiv.org/ftp/arxiv/papers/1206/1206.6457.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7352306


• Hyperparameters can interact in very non-linear ways 

• Use a neural net to learn a suitable basis expansion ϕz(λ) for all tasks 

• You can use Bayesian linear models, transfers info on configuration space

Learn basis expansions for hyperparameters
Perrone et al. 2018

P

Bayesian Linear surrogate

φz(λ)i

λi,scores

Learn basis expansion on lots of data (e.g. OpenML)

φz(λ)

φz(λ)

λ
Gaussian Processes surrogate

https://arxiv.org/abs/1712.02902


• If task j is similar to the new task, its surrogate model Sj  will likely transfer well 

• Sum up all Sj  predictions, weighted by task similarity (as in active testing)1  

• Build combined Gaussian process, weighted by current performance on new task2

Tasks

ModelsModelsModels

performance

LearningLearningLearning New Task

meta-learner

ModelsModelsModels

performance

per task tj:

Pi,j
}

Surrogate model transfer
1 Wistuba et al. 2018

λi

P
Sj

2 Feurer et al. 2018

S = ∑ wj Sj

+

+

S1

S2

S3

λi

https://link.springer.com/article/10.1007/s10994-017-5684-y
https://arxiv.org/abs/1802.02219


prior tasks

Surrogate model transfer
Manolache & Vanschoren 2019

• Store surrogate model Sij  for every pair of task i and algorithm j 


• Simpler surrogates, better transfer


• Learn weighted ensemble -> significant speed up in optimization

new task

http://metalearning.ml/2019/papers/metalearn2019-manolache.pdf


Warm starting  
(what works on similar tasks?)

start randomly

start with 

good candidates

Task

λ, scores
Learnermetadata



How to measure task similarity?
• Hand-designed (statistical) meta-features that describe (tabular) datasets 1 

• Task2Vec: task embedding for image data 2 

• Optimal transport: similarity measure based on comparing probability distributions 3 

• Metadata embedding based on textual dataset description 4 

• Dataset2Vec: compares batches of datasets 5 

• Distribution-based invariant deep networks 6

1 Vanschoren 2018
2 Achille et al. 2019

3 Alvarez-Melis et al. 2020
4 Drori et al. 2019

5 Jooma et al. 2020
6 de Bie et al. 2020

Figure source: Alvarez-Melis et al. 2020

https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1902.03545
https://www.microsoft.com/en-us/research/publication/geometric-dataset-distances-via-optimal-transport/
https://arxiv.org/abs/1910.03698
https://www.ismll.uni-hildesheim.de/pub/pdfs/jomaa2019c-nips.pdf
https://arxiv.org/abs/2006.13708


• Find k most similar tasks, warm-start search with best λi    

• Auto-sklearn: Bayesian optimization (SMAC) 

• Meta-learning yield better models, faster 

• Winner of AutoML Challenges

Tasks

ModelsModelsModels

performance

LearningLearningLearning

New Task

meta-learner

ModelsModelsModels

performance
Pi,j

}

Warm-starting with kNN

λ1..k

mj

best λi  on 
similar tasks

 Feurer et al. 2015

λi

Bayesian optimization

λ

P
λ1

λ3

λ2

λ4

Figure source: Feurer et al., 2015

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning


Fusi et al. 2017

Pi,j

λi

TL

λL

tj

tnew warm-started  
with λ1..k

. . .. .   .  .. .  . . . 

λi

λLi

P

p(P|λLi)

latent representation

• Learn  latent representation for 
tasks T and configurations λ 

• Use meta-features to warm-start 
on new task 

• Returns probabilistic predictions 
for Bayesian optitmization

• Collaborative filtering: configurations λi are `rated’ by tasks tj

Probabilistic Matrix Factorization

Figure source: Fusi et al., 2017

http://papers.nips.cc/paper/7595-probabilistic-matrix-factorization-for-automated-machine-learning


DARTS: Differentiable NAS
Liu et al. 2018

convolution 
max pooling 
zero

• Fixed (one-shot) structure, learn which operators to use

• Give all operators a weight 

• Optimize  and model weights  using bilevel optimization


• approximate *( ) by adapting  after every training step

αi
αi ωj

ωj αi ωj

One-shot model operator weights αi interleaved optimization 
of  and  with SGDαi ωj

argmax αi
Figure source: Liu et al., 2018

https://arxiv.org/pdf/1806.09055.pdf


• Warm-start DARTS with architectures that worked well on similar problems 

• Slightly better performance, but much faster (5x)

Warm-started DARTS
 Grobelnik and Vanschoren, 2021

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning


Meta-models  
(learn how to build models/components)

Task

λ, scores
LearnermetadataTaskTask



• Learn direct mapping between meta-features and Pi,j 

• Zero-shot meta-models: predict best λi  given meta-features 1 

• Ranking models: return ranking λ1..k  2 

• Predict which algorithms / configurations to consider / tune 3 

• Predict performance / runtime for given 𝛳i  and task 4 

• Can be integrated in larger AutoML systems: warm start, guide search,…

meta-learner

Algorithm selection models

λbest

1 Brazdil et al. 2009, Lemke et al. 2015
2 Sun and Pfahringer 2013, Pinto et al. 2017

meta-learner λ1..k

mj

mj

meta-learner

Pijmj, λi

3 Sanders and C. Giraud-Carrier 2017

meta-learner

Λmj

4 Yang et al. 2018

https://books.google.ca/books?hl=en&lr=&id=-Gsi_cxZGpcC&oi=fnd&pg=PA1&dq=Metalearning:+Applications+to+Data+Mining.&ots=wj0FrYpzNf&sig=60R5Bp5mhf1z5xncfukBDwcvA2w
https://link.springer.com/article/10.1007/s10462-013-9406-y
https://link.springer.com/article/10.1007/s10994-013-5387-y
https://arxiv.org/abs/1706.09367
https://ieeexplore.ieee.org/abstract/document/8215600/
https://arxiv.org/abs/1808.03233


• Learn nonlinearities: RL-based search of space of likely useful activation functions 1 

• E.g. Swish can outperform ReLU 

1 Ramachandran et al. 2017

• Learn optimizers: RL-based search of space of likely useful update rules 2 

• E.g. PowerSign can outperform Adam, RMPprop

2 Bello et al. 2017Learning model components

PowerSign : esign(g)sign(m)g

Swish :
x

1 + e−βx

g: gradient, m:moving average

• Learn acquisition functions for Bayesian optimization 3

3 Volpp et al. 2020

Figure source: Ramachandran et al., 2017 (top), Bello et al. 2017 (bottom)

https://arxiv.org/pdf/1710.05941.pdf
https://arxiv.org/pdf/1709.07417.pdf
https://openreview.net/pdf?id=ryeYpJSKwr


Monte Carlo Tree Search + reinforcement learning
MOSAIC [Rakotoarison et al. 2019] 

AlphaD3M [Drori et al. 2019]

• Self-play:  

• Game actions: insert, delete, replace components in a pipeline 

• Monte Carlo Tree Search builds pipelines given action probabilities 

• With grammar to avoid invalid pipelines 

• Neural network (LSTM) Predicts pipeline performance (can be pre-trained on prior datasets)

Figure source: Drori et al., 2019

https://arxiv.org/pdf/1906.00170.pdf
https://arxiv.org/pdf/1905.10345.pdf


Neural Architecture Transfer learning
Wong et al. 2018

• Warm-start a deep RL controller based on prior tasks

• Much faster than single-task equivalent

Figure source: Wong et al., 2018

https://papers.nips.cc/paper/8056-transfer-learning-with-neural-automl.pdf


Meta-Reinforcement Learning for NAS
• Train an agent how to build a neural net, across tasks

• Should transfer but also adapt to new tasks

Actions: add/remove certain 
layers in certain locations

Gomez & Vanschoren, 2019

https://arxiv.org/abs/1911.03769


omniglot vgg_flower dtd

Results on increasingly difficult tasks:

• Initially slower than DQN, but faster after 

a few tasks

• Policy entropy shows learning/re-

learning

Gomez & Vanschoren, 2019

Meta-Reinforcement Learning for NAS

https://arxiv.org/abs/1911.03769


MetaNAS: MAML + Neural Architecture Search
Elsken et al., 2020

Figure source: Elsken et al., 2020

• Combines gradient based meta-learning (REPTILE) with NAS

• During meta-train, it optimizes the meta-architecture (DARTS weights) along with 

the meta-parameters (initial weights) 𝛳

• During meta-test, the architecture can be adapted to the novel task through 

gradient descent

https://arxiv.org/abs/1911.11090


Thank you

Image source: Pesah et al. 2018 

http://metalearning.ml/2018/slides/meta_learning_2018_Pesah.pdf

